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Abstract

Background: Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial
number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves
insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and
mitochondrial biogenesis/function in skeletal muscle of type 2 diabetic Goto–Kakizaki rats.

Methodology/Principal Findings: We demonstrated that defect of glucose and lipid metabolism is associated with low
mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle of the diabetic Goto-Kakizaki rats. The
treatment of combination of R-a-lipoic acid, acetyl-L-carnitine, nicotinamide, and biotin effectively improved glucose
tolerance, decreased the basal insulin secretion and the level of circulating free fatty acid (FFA), and prevented the reduction
of mitochondrial biogenesis in skeletal muscle. The nutrients treatment also significantly increased mRNA levels of genes
involved in lipid metabolism, including peroxisome proliferator–activated receptor-a (Ppara), peroxisome proliferator–
activated receptor-d (Ppard), and carnitine palmitoyl transferase-1 (Mcpt-1) and activity of mitochondrial complex I and II in
skeletal muscle. All of these effects of mitochondrial nutrients are comparable to that of the antidiabetic drug, pioglitazone.
In addition, the treatment with nutrients, unlike pioglitazone, did not cause body weight gain.

Conclusions/Significance: These data suggest that a combination of mitochondrial targeting nutrients may improve
skeletal mitochondrial dysfunction and exert hypoglycemic effects, without causing weight gain.
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Introduction

Increasing evidence suggests that mitochondrial dysfunction due

to oxidative damage is a major contributor to aging, degenerative

diseases such as cancer, and metabolic syndrome, such as obesity

and type 2 diabetes [1,2,3]. Skeletal muscle insulin resistance may

play an important role in the pathogenesis of the metabolic

syndrome and 2 type diabetes [4]. Recent studies reported insulin

resistance is associated with impaired skeletal muscle oxidation

capacity and reduced mitochondrial number and function [5,6].

Therefore, protecting mitochondria from oxidative damage to

improve mitochondrial function in skeletal muscle seems a possible

strategy to prevent and treat diseases associated with mitochon-

drial dysfunction [7,8,9,10]. For example, rosiglitazone improves

the suppression of adipose mitochondrial biogenesis in db/db and

high fat diet-fed mice [11]. Pioglitazone reduces hyperglycemia,

hyperlipidemia, and hyperinsulinemia in male fatty rats [12],

improves mitochondrial function and stimulates mitochondrial

biogenesis in human adipocyte/tissue in vitro [13,14] or human

neuron-like cells [15]. Metformin delays the manifestation of

diabetes and vascular dysfunction and reduces mitochondrial

oxidative stress in Goto-Kakizaki (GK) rats [16]. However, the use

of any pharmacological therapy for type 2 diabetes, such as

thiazolidinedione, insulin, metformin, and other oral hypoglyce-

mic agents or combination therapy with or without insulin appears

to be associated with an increased risk of heart failure and body

weight gain [17]. Therefore, effective treatments without apparent

side effects are greatly needed for preventing and treating diabetes

and other metabolic syndromes.

We have defined a group of mitochondrial targeting antiox-

idants/metabolites as mitochondrial nutrients [8,9,18], i.e.,

nutrients which improve mitochondrial function and protect

mitochondria from oxidative damage, including those that can

1) inhibit or prevent oxidant production in mitochondria; 2)
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scavenge and inactivate free radicals and reactive oxygen species;

3) repair mitochondrial damage and enhance antioxidant defenses

by stimulating mitochondrial biogenesis and inducing phase-2

enzymes; and 4) act as cofactors/substrates to protect mitochon-

drial enzymes and/or stimulate enzyme activity. One good

example of mitochondrial nutrients is R-a-lipoic acid (LA)

[9,19,20,21].

More recently, we have examined the effect of LA and acetyl-L-

carnitine (ALC), as well as their combination, on mitochondrial

biogenesis in 3T3-L1 adipocyte. We found that treatment with a

combination of LA and ALC significantly improved mitochondrial

function and increased mitochondrial biogenesis related transcrip-

tion factors while the treatments with only LA and ALC alone at

the same concentrations showed little effect [22]. From these

results, we have concluded that the combination of mitochondrial

targeting nutrients may complementarily promote mitochondrial

synthesis and adipocyte metabolism and possibly, like thiazolidi-

nedione drugs, prevent and treat insulin resistance in type 2

diabetes. In the present study, we investigated the effects of a

combination of LA and ALC, with two other mitochondrial

nutrients, nicotinamide and biotin, on improving glucose toler-

ance, insulin release, fatty acid metabolism, and mitochondrial

biogenesis and function in the spontaneous diabetic GK rats.

Results

Metabolic characteristics of GK rats
The metabolic characteristics of GK rats are summarized in

Table 1. After the 12-week administration, there was no difference

in body weight between the untreated and the nutrients-treated

GK rats, however, the body weight in the pioglitazone-treated

group was significantly higher than that of other groups. The

pioglitazone-induced gain of body weight is consistent with a

previous report [23]. The pioglitazone treatment tended to

increase food intake (measured for individual rats in g/kg/24 h)

and significantly reduced the levels of triglyceride and total

cholesterol in blood. The nutrients-treatment did not affect fasting

glucose and triglyceride levels, but significantly reduced fasting

plasma insulin (p,0.01 vs. GK) and slightly decreased total

cholesterol level in GK rats.

Effects on glucose tolerance and plasma FFA
We first examined whether the mitochondrial nutrient treatments

could improve the glucose tolerance because hyperglycemia is the

defining characteristic of type 2 diabetes and improvement of glucose

tolerance is one of the most critical criteria for evaluating the

effectiveness of hypoglycemic drugs. Fig 1A illustrates changes in the

blood glucose levels during OGTT in GK and Wistar rats.

Hyperglycemic responses in GK rats to OGTT were significantly

greater than those in Wistar rats. In the diabetic GK rats treated with

nutriments for 12 week, the levels of glucose obtained 60, 120 and

180 min after glucose intake were significantly lower than that in the

untreated GK diabetic rats (24.461.0 mmol/l vs. 27.861.0 mmol/l,

p,0.05; 21.160.9 mmol/l vs. 24.760.9 mmol/l, p,0.01 and

12.961.3 mmol/l vs. 15.061.5 mmol/l, p,0.01, respectively).

The blood glucose level at 60 min in the pioglitazone-treated diabetic

rats was also significantly lower than the corresponding control

diabetic value (22.661.6 mmol/l vs.27.861.0 mmol/l, p,0.05)

(Figure 1A).

Chronic elevation in plasma FFA levels is commonly associated

with impaired insulin-mediated glucose uptake in skeletal muscles

and often coexists with obesity and type 2 diabetes. The higher

FFA may cause peripheral insulin resistance by interfering with the

access of insulin to skeletal muscle or the insulin signaling resulting

in reduced glucose transport into muscle [24]. Therefore, lowering

FFA has been postulated to be a potential therapeutic target for

type 2 diabetes. In our results, we have found that the plasma FFA

in the GK diabetic rats was significantly higher than those in the

non-diabetic Wistar rats before treatments. After 12 week

treatment, the plasma FAA was significantly decreased in all

groups with drugs. The increases in plasma FFA in the untreated

GK diabetic rats were still significantly higher than those in the

non-diabetic Wistar rats (Fig 1B).

Effects on mitochondrial DNA and protein in soleus
muscle

D-loop is known as the major site of transcription initiation on

both the heavy and light strands of mtDNA. In Fig 2A, the ratio of

mtDNA D-loop/nuclear DNA 18S rRNA in GK rats was

significantly lower than that in Wistar rats (p,0.01vs.wistar

control). The pioglitazone-treated diabetic rats was significantly

higher than the untreated GK diabetic rats (p,0.05 vs. control). In

the diabetic rats treated with nutriments for 12 week, the ratio of

mt D-loop/18S rRNA was significantly higher than the untreated

GK diabetic rats (p,0.05 vs. GK control).

If there is an increased mitochondrial DNA content, there

should be a concomitant increase in viable mitochondria and

mitochondrial components, including electron chain transport

complex enzymes. We examined the effects of mitochondrial

nutrients on the expression of complex I and II and found that the

expression of complex I and complex II (Fig 2B) in GK rats were

significantly lower than Wistar rats (8264.2% p,0.05 vs. Wistar

control; 74.567.0% p,0.05 vs. Wistar control; respectively). In

the diabetic GK rats treated with nutriments, the expression of

complex I and complex II were increased significantly compared

with that in the untreated GK rats (152618%, p,0.05 vs. GK

control; 12166.7%, p,0.05 vs. GK control; respectively). The

expression of complex I, but not complex II, in the pioglitazone-

treated GK rats was also significantly higher than the GK control

rats (144612.6%. p,0.01vs.GK control).

Effects on mitochondrial complex activities
The improvement of the expression of the mitochondrial

complex enzymes suggests there should be a consequent

improvement of the complex enzyme activity in the GK rats.

Our measurement showed that the activity of mitochondrial

complex I and II (Fig 3) were significantly lower in GK rats than in

Wister rats (80.566.3%, p,0.05 vs. control; 89.961.9%, p,0.01

vs. control; respectively) and the administration of mitochondrial

Table 1. Morphometric and plasma variables in GK rats with
different treatments.

GK
GK with
nutrients

GK with
pioglitazone

Body weight (g) 326.5626.0 329.2619.8 419.3621.6 **

Food intake (g/kg/d) 81.566.5 78.1.4611.1 84.8612.4

Fasting plasma glucose (mmol/l) 6.060.15 5.660.16 5.860.23

Fasting plasma insulin (ng/ml) 1.0660.14 0.6060.08* 0.9960.07

Triglycerides (mmol/l) 1.8360.04 1.8660.23 0.8360.04**

Total cholesterol (mmol/l) 3.0660.06 2.8760.15 2.5960.04 *

Values are mean6SEM of 12 animals in each group.
*p,0.05 vs. GK control;
**p,0.01 vs. GK control.
doi:10.1371/journal.pone.0002328.t001

Mt Nutrients on GK Rats
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nutriments and pioglitazone to the GK rats significantly increased

the activity of complex I (10465.0%, p,0.05 vs. GK control;

11065.4%, p,0.05 vs. GK control, respectively) and the activity

of complex II (114.267.1%, p,0.05 vs. GK control;

114.667.4%, p,0.05 vs. GK control, respectively).

Effects on expression of PPARGC1A, Nrf1 and Tfam
Peroxisome proliferator activator protein-c co-activator-1a

(PPARGC1A) is a transcription coactivator that promotes

mitochondrial biogenesis and mitochondrial fatty acid oxidation.

Increasing evidence suggests that PPARGC1A is involved in the

pathogenesis of type 2 diabetes by playing a pivotal role in the

control of genetic pathways that result in homeostatic glucose

utilization in liver and muscle, beta cell insulin secretion and

mitochondrial biogenesis [25,26]. Rosiglitazone was shown to

restore PPARGC1A expression in obese patients with type 2

diabetes mellitus [27]. In our study, no difference in PPARGC1A

expression was found between the Wistar and the untreated GK

rats, however, both the treatment with pioglitazone (210645%,

p,0.01 vs. GK control) and mitochondrial nutriments

(224625%, p,0.01 vs. GK control) significantly increased the

expression of PPARGC1A (Fig 4A).

Figure 1. Effects of mitochondrial nutriments on OGTT and plasma free fatty acid (FFA). A: OGTT was carried out at the end of 12 weeks
of nutrient administration. All rats fasted overnight before OGTT. Blood was taken from the retrobulbar vein at 0, 30, 60, 120 and 180 min after the
oral glucose administration (5 g/kg body weight). Plasma glucose concentration was determined by the glucose oxidase method. Data are
means6S.E. of 12 observations in each group. * p,0.05, **p,0.01 vs. the respective values in the GK control group. B: Plasma free fatty acid was
measured in groups at beginning or after nutrient administration for 12 weeks. Serum levels of free fatty acids in different groups after overnight
fasting. Data are means6S.E. of 12 animals in each group. **p,0.01 vs. the respective values in the Wistar control group. ##p,0.01 vs. the
respective values in the GK control group.
doi:10.1371/journal.pone.0002328.g001

Mt Nutrients on GK Rats
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Transcription factors nuclear respiratory factor-1 (Nrf1) and

mitochondrial transcription factor A (Tfam) are involved in

regulating expression of nuclear genes encoding major mitochon-

drial proteins that regulate mtDNA transcription and replication

[9,26]. We could not find difference in the expression of Nrf1

mRNA between the Wistar and the untreated GK rats while the

pioglitazone treatment resulted in a trend towards an increase and

the mitochondrial nutriment administration significantly increased

the mRNA expression of Nrf1 (334674.1, p,0.01vs.GK control)

(Fig 4B). Levels of Tfam mRNA were found to be significantly

lower in the GK rats than in the Wister rats (72.665.7%, p,0.01

vs. Wistar control). After the 12 week treatment, the expression of

Figure 2. Effect of mitochondrial nutriments on mitochondrial DNA and protein in soleus muscle. A: Total DNA was isolated from soleus
muscle. The mtDNA contents were determined by real-time PCR. The DNA contents of mtDNA and nuclear 18S rRNA gene (18S rDNA) were calculated
from the standard curve and the relative ratios of mtDNA contents against nuclear 18S rRNA gene were determined in each group. Results are
expressed as percentage of Wistar control. Data are mean+SEM (n = 5). **P,0.01 vs. Wistar control; # p,0.05 vs. GK control. B: Protein (10 mg) was
solubilized in SDS sample buffer and analyzed by western blotting with antibodies against tubulin, mitochondrial electron transport complex I and
complex II. The quantitative analyses of the bands by densitometry are shown. Results are presented as percentage of Wistar control. *p,0.05 vs.
Wistar control; #P,0.05, ##p,0.01 vs. GK control.
doi:10.1371/journal.pone.0002328.g002

Mt Nutrients on GK Rats

PLoS ONE | www.plosone.org 4 June 2008 | Volume 3 | Issue 6 | e2328



Tfam was significantly increased in the nutriments-treated group

(113.3617.5%, p,0.05 vs. GK control); and in the pioglitazone-

treated group (97.465.0%, p,0.01 vs. GK control).

Effects on expression of Ppara, Ppard and Mcpt-1
Ppara and Ppard, which are ligand-activated transcription

factors, are critical to fat metabolism. Ppara mediates the

hypotriglyceridemic effect of fibrates by inducing high rates of

mitochondrial peroxisome b-oxidation in liver, kidney, heart and

muscle, and by decreasing the plasma concentration of triacylgly-

cerol-rich lipoproteins [28]. Ppard is mainly expressed in brown

adipose tissue and muscle, and specifically induces the expression

of genes required for fatty acid oxidation and energy dissipation

which lead to the improvement of lipid profiles and the reduction

of adiposity [29]. Increasing the level of Ppard in white adipose

tissues has been suggested as a potential strategy to treat obesity

[30]. As shown in Fig 5, levels of Ppara and Ppard mRNA were

significantly lower in GK rats than that in Wister rats (49.662.2%,

p,0.01 vs. Wistar control; and 54.368.2%, p,0.05 vs. Wistar

control, respectively). Administration of mitochondrial nutriments

to the GK rats significantly increased the expression of Ppara
(93615.8%, p,0.05 vs. GK control) and Ppard (108621%,

p,0.05 vs. GK control) in soleus muscle. The treatments with

pioglitazone only significantly increased the expression of Ppara
mRNA (90619.7%, p,0.05 vs. GK control; respectively), but not

Ppard mRNA.

Muscle-type CPT-1 (Mcpt-1) is a protein involved in fatty acid

metabolism and the expression is regulated by PPARs, such as

Ppara in cardiomyocytes [31]. We have found that the level of

Mcpt1 mRNA was significantly lower in GK rats than in Wister

rats (2762.6%, p,0.01) (Fig 5). Administration of the mitochon-

drial nutriments to the GK rats significantly increased the levels of

Mcpt-1 (97618.4%, p,0.05 vs. GK control) in soleus muscle.

Discussion

A recent study indicated that mitochondrial dysfunction is

present in the prediabetic state [32], suggesting that mitochondrial

dysfunction may play a role in the development to 2 type diabetes

[3]. The GK rat is a model of non-obese, spontaneous type II

diabetes. The pathogenesis of diabetes in the GK rat involves an

impaired insulin secretion, insulin resistance, an abnormal glucose

metabolism as well as an impaired ontogenetic development of

pancreatic islet cells [33,34] and mitochondrial dysfunction in the

liver [35] and heart [36]. In the present study, we observed that

defect of glucose and lipid metabolism is associated with low

mitochondrial content and reduced mitochondrial enzyme activity

in skeletal muscle of the diabetic Goto-Kakizaki rats. We have

demonstrated that a combination of 4 mitochondrial nutrients,

comparable to the anti-diabetic drug pioglitazone, ameliorated the

symptoms of diabetes including beta-cell dysfunction, enhanced

mitochondrial biogenesis, improved mitochondrial function and

fatty acid and glucose metabolism in diabetic G-K rats. In

addition, the pioglitazone caused gain of body weight, a known

clinical drawback of thiazolidinedione for treatment of type

2diabetic patients [23]. On contrary, the nutrient treatment did

not cause any significant change of body weight, suggesting there is

an advantage of nutrients over the anti-diabetic drugs.

The combination contains LA, ALC, biotin and niacin. First,

LA has been shown to mitigate insulin resistance in GK rats [37],

and it has also been shown that improvement of insulin sensitivity

is mediated by activation of AMPK and reduced triglyceride

accumulation in skeletal muscle [38].

Second, ALC is the acetyl derivative of L-carnitine which plays

an important role in lipid metabolism, acting as an obligatory

cofactor for beta-oxidation of fatty acids by facilitating the

transport of long-chain fatty acids across the mitochondrial

membrane as acylcarnitine esters. Both L-carnitine and ALC are

shown to be effective in improving insulin-mediated glucose

disposal either in healthy subjects or in type 2 diabetic patients

with two possible mechanisms: regulating acetyl and acyl cellular

trafficking for correctly meeting energy demand and controlling

the synthesis of key glycolytic and gluconeogenic enzymes [39,40].

Third, biotin-dependent carboxylases play important role in

mitochondrial function because four of the five biotin-dependent

carboxylases are in the mitochondria. A high intake of biotin

may exert effects on beta cells, liver and skeletal muscle, that

favor good glucose tolerance [41]. In addition, it was shown that

LA could reduce the activities of biotin-dependent carboxylases,

such as pyruvate carboxylase and b-methylcrotonyl-CoA car-

boxylase, in rat liver while biotin co-treatment with LA could

normalize these carboxylase activities [42]. Though the mild

decreases in carboxylase activities caused by LA would

presumably not cause pathology, it is always essential to keep

homeostasis and avoid side-effects by a simple co-administration

with biotin.

Figure 3. Effect of mitochondrial nutriments on complex I and II enzyme activity in soleus muscle. After 12 week treatment,
mitochondria were isolated from soles and the activities of mitochondrial Complex I and Complex II were assayed spectrometrically using the
conventional assays. Results are presented as percentage of Wistar control. Data are means6SEM of 12 animals in each group. *p,0.05, **p,0.01 vs.
Wistar control; #p,0.05 vs. GK control.
doi:10.1371/journal.pone.0002328.g003

Mt Nutrients on GK Rats
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Fourth, niacin has been used in the treatment of cardiovascular

diseases for improvement of disturbed lipid and lipoprotein

metabolism. It is still the most efficacious drug in terms of its

ability to increase HDL cholesterol content accompanied by a

decrease in all atherogenic lipoproteins as well as fatty acids and

triglycerides. Niacin was shown to be an antilipolytic agent

because it, similar to the adenosine receptor agonist phenyliso-

propyladenosine, lowers plasma glucose, plasma FFA, hepatic

glucose production, and enhances insulin-stimulated glucose

uptake in streptozotocin-induced diabetic rats [43]. There are

studies on niacin against the loss of beta cell function in type 1

diabetes [44,45]. Nicotinamide injection could prevent beta cell

Figure 4. Effect of mitochondrial nutriments on expression of PPARGC1A, Nrf1 and Tfam. A: Western blot analysis in adipocytes of
PPARGC1A. Quantitative values were tabulated with the ratio of densities of PPARGC1A: tubulin. Values are mean6SE of 12 animals in each
group.*p,0.05, p,0.01 vs. Wistar control; # p,0.05, ##p,0.01 vs. GK control. B: Total RNA was isolated from soleus muscle. mRNA of Nrf1 and
Tfam were analyzed by means of quantitative RT-PCR with gene-specific oligonucleotide probes in muscle. The cycle number at which the various
transcripts were detectable was compared to that of nuclear18S rRNA as an internal control, and expressed as arbitrary units versus values in Wistar
control taken 100. All values are mean6SEM of 12 animals in each group.*p,0.05, ** p,0.01 vs. Wistar control; #p,0.05, ##p,0.01 vs. GK control.
doi:10.1371/journal.pone.0002328.g004

Mt Nutrients on GK Rats
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abnormalities, glucose-stimulated insulin secretion loss, GLUT2

loss, and triglyceride accumulation in obese Zucker diabetic fatty

rats [46]. Nicotinamide was shown to be effective agent for

prevention and treatment of insulin-dependent diabetes mellitus

(IDDM) in prediabetic and early stage IDDM because nicotin-

amide treatments (intramuscularly or orally) normalized antioxi-

dant enzyme system activity and the levels of lipid peroxidation

products, and prevented the occurrence of streptozotocin-induced

diabetes mellitus in rats [47,48]. The main reason for us to include

this B vitamin is mainly to use it as a source of the NADH and

NADPH coenzymes required for mitochondria. NAD (P) H acts as

a donor of hydrogen anion in a variety of enzymatic processes,

such as the reduction of GSSG to GSH. Increased NAD(P)H may

help the reduction of the exogenously administered oxidized form

LA , which needs to be NAD(P)H-dependently reduced in

mitochondria or cytosol [49]. In addition, Kirsch and De Groot

[50] have proposed that NAD(P)H may also act as directly

operating antioxidant, which limit the action of freely diffusing

radicals by scavenging the attacking, oxidizing radical and

reducing oxidized bio-molecules.. Of course, nicotinamide may

also improve pancreatic islet dysfunction, which is an important

feature of GK pathogenesis [33,34].

We have recently examined the effect of LA and ALC as well as

their combination, on mitochondrial biogenesis in 3T3-L1

adipocyte. We found that treatments with the combination of

LA and ALC at concentrations of 0.1, 1, and 10 mM for 24 hrs

significantly increased the number of viable mitochondria,

expression of mitochondrial DNA, mitochondrial complexes,

oxygen consumption, and fatty acid oxidation in 3T3L1 adipocyte.

These changes were accompanied with an increase in the mRNA

expression of Pparc, Ppara, and Cpt-1, and the expression of several

transcription factors involved in mitochondrial biogenesis, Pparg-

c1a,Tfam, and Nrf1 and Nrf2. In contrast, the treatments with only

LA or ALC alone at the same concentrations showed little effect

on mitochondrial function and biogenesis [22]. From these results,

we have concluded that combination of mitochondrial targeting

nutrients/compounds may complementarily promote mitochon-

drial synthesis and adipocyte metabolism and possibly prevent and

treat insulin resistance in type 2 diabetes.

No study has been carried out on the effect of these nutrients on

mitochondrial biogenesis in diabetic animals. Based on our

intriguing results of the combination of LA and ALC on

mitochondrial biogenesis in adipocytes, the main purpose of the

present study is to see whether the in vitro effect of LA and ALC

on mitochondrial function and biogenesis could be replicated in

vivo in an animal model. As shown in our results, the treatment

with the combination of the mitochondrial nutrients stimulated

mitochondrial biogenesis through the activation of the Ppargc1a
pathway, similar to that in 3T3L1 adipocyte. It might be

important to perform a study with the individual nutrients on

mitochondrial biogenesis in the future; however, from the results

we obtained in this in vivo study, we could presume that

mitochondrial biogenesis may be mainly induced by the

combination of LA and ALC. Biotin may play its physiological

role as a prosthetic group in the biotin-dependent carboxylases to

compete with LA to keep the homeostasis of mitochondrial

carboxylases [42]. Nicotinamide may synergize the effect by

providing NAD(P)H for a more reducing environment and

enhancing mitochondrial antioxidant defense, thus, improves

mitochondrial function leading to better glucose tolerance and

maintenance of effective beta cell function.

Although we have termed these nutrients mitochondrial

targeting agents and focused on their effects on mitochondria, it

should be borne in mind that the four nutrients used are also

essential for non-mitochondrial cell functions as well. For example,

although lipoic acid is a mitochondrial co-factor and mainly

located in mitochondria, it is also available to and influences many

activities in other parts of the cell when supplied exogenously.

Therefore, there is a possibility that the outcomes are mediated via

other cellular organelles and the interactions between mitochon-

dria and other organelles, such as endoplasmic reticulum. Future

studies on the multiple functions of these nutrients, such as the

effects on endoplasmic reticulum and the interactions with

mitochondria are warranted.

We have also tested the effect of much higher doses of these

nutrients (10 fold) and found that the higher dose, unlike the lower

dose, did not show significant effects in most of the parameters

examined. The reason for the loss of the effect of higher doses is

unknown but we propose that the nutrients may have a bell-shape

curve of dose-dependent effect as most nutrients and drugs. The

higher dose may fall on the right side of the bell-shape curve. The

loss of the effect might be due to a compromise between the effect

Figure 5. Effect of mitochondrial nutriments on expression of Ppara, Ppard and Mcpt-1. Total RNA was isolated from soleus muscle. Ppara,
Ppard and Mcpt-1 mRNA were analyzed by means of quantitative RT-PCR with gene-specific oligonucleotide probes in muscle. The cycle number at
which the various transcripts were detectable was compared to that of nuclear 18S rRNA as an internal control, and expressed as arbitrary units
versus values in Wistar control taken 100. All values are mean6SEM of 12 animals in each group. *p,0.05, ** p,0.01 vs. Wistar control; #p,0.05,
##p,0.01 vs. GK control.
doi:10.1371/journal.pone.0002328.g005

Mt Nutrients on GK Rats
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and the toxicity. Though further study is needed, the present data

of the high dose suggest these nutrients are safe even at 10 fold

doses of their effective doses.

In conclusion, a treatment with a combination of 4 mitochon-

drial nutrients in spontaneous diabetic GK rats, as effectively as

the anti-diabetic drug pioglitazone, improved glucose tolerance,

insulin release, fat acid metabolism, and mitochondrial function

through a stimulation of Ppargc1a regulated mitochondrial

biogenesis pathway. In addition, the treatment with nutrients is

better than with pioglitazone because the nutrient treatment,

unlike pioglitazone, did not cause body weight increase. These

results suggest that a combination of mitochondria-targeting

nutrients may have clinical application for preventing and treating

metabolic syndromes, such as diabetes.

Materials and Methods

Animals
Four-week-old male diabetic GK rats together with age-

matched male non-diabetic Wistar rats were purchased from

SLAC Laboratory Animal Co. Ltd (Shanghai, China). All animals

were housed at 2362uC under 12-h light and dark cycles, and

allowed access to food and water ad libitum. The experiments

were performed in accordance with the Guidelines for Animal

Experiments of the Institute for Nutritional Sciences, Chinese

Academy of Sciences.

Material
Anti-tubulin from Sigma (St. Louis, MO, USA); anti-

PPARGC1A from Santa Cruz (Heidelberg, Germany); anti-

OxPhos Complex I (NADH ubiquinol oxidoreductase 39-kDA

subunit 1:2000), anti-OxPhos Complex II (succinate-ubiquinone

oxidoreductase 70-kDA subunit 1:2000) from Invitrogen (Carls-

bad, USA); Reverse Transcription System kit from Promega

(Manheim, Germany); HotStarTaq from Takara (Otsu, Shiga,

Japan); Nrf1, Ppara, Ppard, Mcpt-1, D-loop and 18S rRNA

primers were synthesized by Bioasia Biotech (Shanghai, China),

and ALC (hydrochloride salt) from Sigma Tau (Pomezia, Italy).

Biotin and nicotinamide were from Boya Biotech (Shanghai,

China), R-a-lipoic acid (tris salt) was a gift from Dr. K. Wessel,

Viatris, Germany. Pioglitazone was a gift from Taian Pharma-

ceutical. Co., Ltd (Shandong, China). TRIzol and other reagents

were from Invitrogen (Carlsbad, USA).

Experimental protocol
Four groups (n = 12 in each group) of rats were used: two

control groups: Wistar and GK, and two GK experimental groups

with treatments: a pioglitazone group received pioglitazone

10 mg/kg/day by gavage and a nutriment group received a

combination of R-LA 50 mg/kg/day, ALC 100 mg/kg/day,

biotin 0.1 mg/kg/day and nicotinamide 15 mg/kg/day by

gavage. The control groups were received same gavage volume,

but saline alone, as administered to the experimental groups. The

treatments were started at 6-weeks of age, and continued for 3

months. At approximately 18 weeks of age, animals were

anesthetized with an intraperitoneal injection of sodium pento-

barbital (60 mg/kg) and sacrificed for obtaining soleus muscle

tissue.

Oral glucose and insulin tolerance test
An oral glucose tolerance test (OGTT, 5 g/kg body weight) was

performed after starting nutriment administration following the

previous GK rat study [51]. All rats fasted overnight before

OGTT. Blood was taken from the retrobulbar vein at 0, 30, 60,

120 and 180 min after the oral glucose administration. Plasma

glucose concentrations were determined by the glucose oxidase

method.

Insulin assay
Plasma insulin levels were determined by Rat Insulin-specific

RIA kit (Linco Research, Inc., St. Charles, MO) [52].

Plasma free fatty acid (FFA) measurement
Standard solutions of several saturated and unsaturated fatty

acids of varying chain length were prepared in chloroform;

concentrations were in the range of 10–100 mmol/l. Four-milliliter

portions of the various solutions were placed in 15-ml. stoppered

tubes; 2.0 ml of the copper reagent added; and the tubes shaken

thoroughly for 2 min. After allowing the layers to separate, the

upper, cooper-rich aqueous layer was removed with a fine Pasteur

pipette, leaving no traces of the aqueous layer on the surface of the

chloroform layer containing the copper soap of the acid. This

organic layer must not be contaminated by traces of the copper-

containing aqueous solution. Exactly 3.0 ml of the chloroform

layer was then transferred to a spectrophotometer cuvette of 1-cm

1ight path, and 0.5 ml of the sodium diethyl dithiocarbamate color

reagent added. The contents were mixed by rinsing back and forth

from a pipette. The absorbance at 440 nM was measured; a

sample of chloroform which had been passed through the whole

procedure was used as a reagent blank. The results obtained with

this series of fatty acid solutions of known concentration were used

to prepare a standard calibration curve, from which the

concentration of an unknown can be determined [53,54].

Isolation of skeletal muscle mitochondria
The soleus muscle, which is composed predominantly of type I

muscle fibers rich in mitochondria, was removed from each leg. A

first portion was frozen in liquid N2 and used for total RNA and

protein extraction. A second portion was used immediately for

mitochondrial isolation. Soleus muscles were trimmed off fat and

connective tissue, chopped finely with a pair of scissors, and used

for mitochondrial isolation according to the method of Birch-

Machin et al [55]. Each aliquot was rinsed in ice-cold medium A

(120 mmol/l NaCl, 20 mmol/l HEPES, 2 mmol/l MgCl2,

1 mmol/l EGTA, and 5 g/l bovine serum albumin; pH 7.4) to

remove any residual blood. The disrupted muscle was made up to

20 volumes with respect to the original wet weight of tissue with

medium A and homogenized with a hand-held borosilicate glass

homogenizer. The homogenate was centrifuged at 6006g for

10 min at 4uC. The pellet obtained after centrifugation was

resuspended in 8 volumes of medium A and centrifuged (6006g,

4uC, and 10 min). The 2 supernatant fluids were combined and

were subsequently recentrifuged at 170006g for 10 min at 4uC.

The pellet containing the mitochondria was resuspended in 10

volumes of medium A and then centrifuged at 70006g for 10 min

at 4uC. The pellet obtained after the last centrifugation was

resuspended in 10 volumes of medium B (300 mmol/l sucrose,

2 mmol/l HEPES, 0.1 mmol/l EGTA; pH 7.4) and recentrifuged

(35006g, 10 min, 4uC). The resulting pellet, which contained

soleus muscle mitochondria, was suspended in a small volume of

medium B and was stored at 270uC until analyzed.

RNA isolation and reverse transcription PCR
Total RNA was isolated from ,30 mg of tissue using the single-

step TRI reagent and 1 ug of RNA was reverse transcribed into

cDNA. In brief, the isolated RNA was dissolved in sterile water

and 2.5 mmol/l Mg2+, 1 mmol/l dNTPs, 0.5 mg oligodT15, 25 U
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AMV reverse transcriptase, 106RT buffer, giving a final volume

of 20 ml. The sample was incubated at 25uC (10 min), 42uC
(60 min), and 99uC (5 min). cDNA was diluted in DNase-free

water (1:25) before quantification by real-time PCR. The primers

for quantization of mRNA by real-time qPCR for Nrf1, Tfam,

Ppara, Ppard, Mcpt-1, and 18S rRNA were listed as below:

Nrf1: Forward: 59-TTACAGGGCGGTGAAATGAC-39,

Reverse: 59- GTTAAGGGCCATGGTGACAG-39;

Tfam: Forward: 59- CCCTGGAAGCTTTCAGATACG-39,

Reverse: 59- AATTGCAGCCATGTGGAGG-39;

Ppara: Forward: 59- TCACACAATGCAATCCGTTT-39,

Reverse: 59-GGCCTTGACCTTGTTCATGT-39;

Ppard: Forward: 59- GCAGATGGGCTGTGATGG-39,

Reverse: 59-ACTGACACTTGTTGCGGTTC -39;

Mcpt-1: Forward: 59-CATGGTGAACAGCAACTATTACG-39,

Reverse: 59-CATCTGGTAGGAGCACATGG-39;

18S rRNA: Forward: 59-CATTCGAACGTCTGCCCTATC-39,

Revese: 59-CCTGCTGCCTTCCTTGGA-39;

Quantitative PCR was performed in Mx3000P Real-Time PCR

system (Stratagene). Each quantitative PCR was performed in

triplicate. The rat 18S rRNA gene served as the endogenous

reference gene. The evaluation of relative differences of PCR

product among the treatment groups was carried out using the

DDCT method. The reciprocal of 2CT (used CT as an exponent

for the base 2) for each target gene was normalized by that for 18S

rRNA, followed by the comparison with the relative value in

control cells. Final results were presented as percentage of control.

Immunoblot analysis of PPARGC1A, complex I and
complex II

For protein blots, approximately 100 mg muscle was homog-

enized in an ice-cold solubilization buffer containing 65 mmol/l

Tris (pH 7.4), 150 mmol/l NaCl, 5 mmol/l EDTA, 1% (v/v)

Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl

sulfate, 10% glycerol, 1 mg/ml aprotinin, 1 mg/ml leupeptin,

10 mmol/l sodium fluoride, 1 mmol/l Na3VO4, and 1 mmol/l

phenylmethylsulfonylfluoride. Protein concentration was deter-

mined using the Bio-Rad DC protein assay. The soluble lysates

(10 mg per lane) were subjected to 10% SDS-PAGE; proteins were

then transferred to nitrocellulose membranes and blocked with 5%

non-fat milk/TBST for 1 h at room temperature. Membranes

were incubated with primary antibodies directed against

PPARGC1A (1:1000), tubulin (1:5000), complex I (1:2000), and

complex II (1:2000), in 5% milk/TBST at 4uC overnight. After

washing membranes with TBST three times, membranes were

incubated with horseradish peroxidase-conjugated antibody for

1 h at room temperature. Western blots were developed using

ECL (Roche Manheim, Germany) and quantified by scanning

densitometry.

Total DNA isolation and real-time PCR
Total DNA was extracted using the QIAamp. DNA Mini kit,

and quantitative (Q) PCR was performed using mitochondrial

DNA and genomic NA-specific primers. The rat 18S rRNA gene

served as the endogenous reference gene. Melting curves were

obtained to ensure specific amplification. The standard curve

method was used for relative quantification. Final results are

expressed as N-fold differences in mitochondrial D-loop expression

relative to the 18S rRNA gene [22].

Assays for activities of mitochondrial complex I and
complex II

Mitochondria were isolated by differential centrifugation of the

tissue homogenates. NADH-CoQ oxidoreductase (Complex I) and

succinate-CoQ oxidoreductase (complex II) were assayed spectro-

metrically using the conventional assays with minor modifications

[56,57]. NADH–CoQ oxidoreductase (complex I) activity was

assayed by monitoring the reduction of 2,6-dichloroindophenol

indophenol (DCPIP) at 600 nm upon addition of assay buffer (10X

buffer containing 0.5 mol/l Tris–HCl, pH 8.0, 1% BSA,

10 mmol/l antimycin A, 2 mmol/l NaN3, 0.5 mmol/l coenzyme

Q1). Final concentration of mitochondria protein was 25 mg/ml.

Reaction was started by adding 200 mmol/l NADH and scanned

at 600 nm for 2 min. Rotenone (3 mmol/l) was added into the

reaction system as blank control. Briefly, complex II was assayed in

the assay buffer (10Xbuffer contain 0.5 mol/l phosphate buffer,

pH 7.8, 1% BSA, 10 mmol/l antimycin A, 2 mmol/l NaN3,

0.5 mmol/l coenzyme Q1) with mitochondria (final concentration

25 mg/ml). The reaction was started with 10 mM succinate and

scanned at 600 nm for 2 min at 30uC.

Statistics
All values are expressed as means6SEM. Significances of

differences among groups and within groups were evaluated using

repeated measures ANOVA and the paired Student’s t test,

respectively. A p value of less than 0.05 was considered statistically

significant.
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